2024/11/03

AI活用や設計DXに走る前に!重要な事業改善・実践テーマの設定

 社長から「とにかくAIやDXで何かやれ」と言うような、手段先行でのテーマ設定が散見されます。もちろんこれらの手段は活用方法によっては、大きな効率化や品質改善、価値向上をもたらすことができます。しかしそれは、テーマ設定ありきなのです。ツールに振り回されないようにしましょう。

 事業改善、実践テーマを設定するときに事なことは、より上位のレベルがないがしろにされ、手法の枝葉末節議論や、目的と手段のはき違えになっていないかに留意すべきということである。いくら性能や良く、ばらつきの少ない製品を効率よく作ったとしても、それが売れなければ全く意味がないのだから。


LEVEL1 事業性の問題・・・コンセプトデザイン
 その製品やサービスがお客様に受け入れられて、製品が売れ、もうかるのかどうか、事業が継続できるのかどうか。つまり、企画の問題である。「よい品質」とは、顧客の要求に合致していることに他ならないので、すべてのスタート点はここにある。手段ではなく、どのような機能、どのような効用の製品やサービスを提供していくのかというテーマである。管理技術ではQFD(品質機能展開)、アイデア発想法、企画の7つ道具などがそのツールとなる。市場調査の手段として、IoT、ビッグデータ、AIを活用するデータサイエンスの分野も喧しい。なお、品質工学では「よい品質」における「価値・効用」の部分、すなわち「機能そのもの」は扱っていない。

LEVEL2 実現性の問題・・・システムデザイン
 顧客の要求が分かり(あるいは想定でき)、目標とする製品やサービスが定義できれば、次にそれを技術的に実現する必要がある。いわゆる研究開発による機能の実現、性能・エネルギー効率の確保の問題である(要求性能に信頼性やコストや環境性等が含まれることも多い)。これはできるだけ企画に先行するほうがよい。新しい方式を立案(発明、流用)し、どのような方式が良いのかを比較検討する。コンピュータシミュレーションや部分的なプロトタイプによる実験も含む。技術者の固有技術、知識、経験、センス、意欲などがモノをいう世界だ。最終的には特許などの知的財産権の独占につながるのだから、手法だけで答えが出る世界でないのは明らかだ。管理技術では、TRIZ、アイデア発想法などがそのツールとなる。信頼性の机上検討ではFMEA、FTAなどの信頼性工学を活用する。原理やメカニズムを解明するフェーズでは実験計画法や統計的手法を用いることもある。

LEVEL3 評価の効率化の問題・・・機能性評価
 考えたシステムの妥当性(特に機能の安定性)を効率よく確認できなければ、それを効率よく比較・改善することはできない。また、開発・設計の初期段階では、性能は見えても信頼性や寿命が分からないことは多い。長時間の信頼性試験、寿命試験に頼らずにこれらを短期間で見極めることは、開発の効率化に大きく寄与する。また、規定の開発期間内に多くのトライアンドエラーが可能となり、性能や信頼性のレベル向上にも寄与する。管理技術では品質工学の機能性評価(機能定義、ノイズ因子、SN比)がそのツールとなる。

LEVEL4 改善の効率化の問題・・・パラメータ設計
 同じシステム内においても、寸法や材料などの設計パラメータの条件変更により特性(ばらつきや平均値)を改善できる場合が多い(特に初めて採用したシステムの場合)。設計パラメータの条件の組合せの評価を効率的に行いたいというニーズがある。そのため直交表を用いることが多いが、一部実施実験である直交表での最適条件(候補)がはたして、実際の(仮想的には全条件を実施した場合の)最適条件と一致するのかどうかが問題となる。これを再現性という。すなわち、どこまで改善できるかはLEVEL2の基本設計にかかっているが、それを効率よく改善できるかどうかは、LEVEL3の評価の問題と、LEVEL4の再現性の問題である。管理技術では品質工学のパラメータ設計(機能性評価に加えて、直交表、要因効果図、確認実験、その他再現性確保のための手法)などがそのツールとなる。品質工学の研究会等ではいきなりこのレベルの話から入ることが多いと感じる(もちろん前提がきちんとあって、説明できるのなら問題はないのだが、直交表などのツールに振り回されているものも散見される)。

 これ以降にも詳細設計に入ってからの各スペックのバランスやトレードオフの問題もある。これらは多目的最適化や許容差設計の分野となる。事業ありき、システムありきでの仕事が中心の場合、このレベルの課題が出てくることは確かである。詳しく知りたい方は弊社のセミナーやコンサルを利用いただきたい。

0 件のコメント: