これでわかった!超実践品質工学」の著者が 自信を持ってお届けする、初めての方に最適な オンラインセミナーです。
こちらから総合パンフレットをダウンロードいただけます。
株式会社ジェダイトのつるぞうによる、品質工学(タグチメソッド)や統計手法、生成AI、技術経営などに関するエッセイ、オンラインセミナー(ウェビナー)・研修・講演・設計・開発コンサルティングなどの情報を中心に紹介するブログです。
品質工学 , タグチメソッド, パラメータ設計 , 機能性評価 , ロバスト設計 , SN比,直交表, MTシステム , 設計・開発,コンサルティング,オンラインセミナー,ウェビナー, 研修, 講演,関西,大阪,技術士, DX, 生成AI, データサイエンス, データエンジニアリング
これでわかった!超実践品質工学」の著者が 自信を持ってお届けする、初めての方に最適な オンラインセミナーです。
こちらから総合パンフレットをダウンロードいただけます。
DQL育成コース:本気で成果を出す人材育成
ジェダイト社の「設計品質リーダー(DQL)育成コース」は、製造業向けの人材育成プログラムです。他と一線を画すのは、「具体的な経営成果」に徹底してこだわる点です。
まずは6分間の受講者の声をお聞きください!
↓↓詳細な説明資料をダウンロード↓↓
https://data-engineering.co.jp/s/-dmp8.pdf
DQLコースは、単なる研修ではなく、企業変革を促す実践プログラムです。「本気で変わりたい」企業が、具体的な成果と成長を掴むための強力な一手となるでしょう。
受講形式:対面およびオンライン(御社システムでもご利用いただけます)
受講可能人数:1期につき4~6名程度まで
受講時間:1年目 1日(6時間より)×12か月
費用に含まれるもの:受講料、講座テキスト
費用:360,000円(税別)/月より ※詳細は人数によってお見積りいたします。
設計品質リーダー育成コースにご参加いただいた塾生からの声をご紹介いたします。いずれも経営幹部様への成果報告会で本人の口から報告された、気づきやリーダとしての心構えに関する生の声です。受講生の成長や熱気を感じてください!
☑金額等の定量的な数値で問題点を明らかにする事で、問題の重要性・緊急性を関係者に共有しやすい。設計品質リーダー育成コースにご参加いただいた塾生からの声をご紹介いたします。
いずれも経営幹部様への成果報告会で本人の口から報告された、気づきやリーダとしての心構えに関する生の声です。受講生の成長や熱気を感じてください!
☑社内の様々な人に接することで当社内の業務を知るきっかけとなり視野が広がった。その中で、様々な部署の仕事の進め方が今後の自分の業務改善に つながることがわかった。
☑期間や費用等、明確なビジョン・目標を開発初期より持ち、それらを部下としっかりと伝えて共有することで、生産性の高い組織をつくることができると感じた。
☑不良損失を未然防止することで、会社の利益に貢献できること、コストに対する意識を今まで以上に持つようになった。
☑実際に効果試算の数値が出てくると、ふだん意識していない程の効果があり、当コースで実践した提言/改善活動の有用性を改めて感じた。
☑お客様のための品質であることを再確認した。また、自分の取り組みで大きな金額を動かせることが分かった。
☑リーダーとして“この人が言っているなら大丈夫” と思われる技術者となるべく、現状に満足せず、期待の一歩先に進んでいく。
☑まだ”ばらつき”に対する考え方が弱い。ばらつきを考慮した設計、製造ができるように、知見や考え方の定着を牽引する人材になる。
☑改めて世の中とのギャップに気づいた。現状分析により理想との差、講師出身企業などとの他社との差。
☑クレーム対応は顧客満足向上のチャンス。その場しのぎではなく、お客様を第一に考えた対応を実施していく。
☑提言書によって最初に計画を整理できた。実際に取組む時にはアウトプットをイメージできるので、業務をブレずに遂行することが出来た。
☑講師や活動メンバーから、具体的な実施アドバイスを頂いた。自身の枠にとらわれずに活動するメリットを改めて感じた。
先日ある会社様へのコンサルで、「製品の品質が悪いので、製造工程の上流(投入材料、製造条件など)にもどって、工程条件と品質の関係を調べている」との相談を受けた。
お手伝をし始めたきっかけが品質工学や多変量解析であったため、そのようなツールを使ったデータ解析を行っているようだ。しかし、確認のためその活動の目的を聞いても、どうも腑に落ちない。どうもデータ分析が目的になってしまっているようだった。
そこで、こちらから「品質が悪い」というのは、具体的に以下のどのケースなのかを再度訪ねた(ここでは、企画の品質、すなわちその製品が売れるかどうかにかかわる品質は除外している)。
1)そもそも図面通りにものが作れず、適合品が十分にとれない問題(この場合、適合品が所定の機能、性能をもつことは前提にされていることが多い)
2)図面通りに作って、そのようになっていることも工程管理や検査によって確認しているにも関わらず、正常に機能するものが十分にとれない問題
3)上記をクリアして良品を出荷したにも関わらず、客先や市場でトラブルを起こす問題(出荷試験モレによる初期不良を除く)。
これらはそれぞれ原因が異なるし、責任部門も異なる。つまり、「品質が悪い」ということが具体的にどういうことなのかを、活動する本人たちがしっかりと認識していないと、正しい活動にならないし、品質がなかなか良くならないばかりか、かえって悪くなってしまう場合もあるだろう。医者が患者の病状を知らずに治療をするようなものである。一部のコンサルタントでも、このような区別があいまいな人もいるので注意が必要だ。
2)は図面通りのものが機能しないのだから、製品設計の中の機能設計(少なくとも設計中央値で目的の機能を発揮する設計)の問題である。この設計ができていなければ、たとえ製造段階でばらつきなく図面通りに製造しても、目的の機能をもつ製品はつくれないことになる。このような設計が製造段階まで流出したのだから、機能設計がまずいだけでなく、それをチェックするためのしくみ(デザインレビュー、機能試験など)も不十分であるということだ。機能や性能の上限は、どのような技術手段を選ぶか(システム選択)でおおむね決まってしまうので、大本をたどれば、源流の研究開発の段階の活動の不十分、不備
も考えられよう。
なお、実際は製造でもばらつきが発生するため、設計中央値に適切な許容差をもうけて、その範囲の製造ばらつきが生じても機能する設計(許容差設計)も必要となる。その許容差の中でモノが作れるかどうかが1)の問題である。
3)は、良品(図面通りに作り、所定の社内試験や検査に合格したもの)が、市場(輸送、保管、使用のすべての段階)において、環境条件の違いや、ストレス、経時変化による劣化などの影響によって、故障(初期の機能や性能が低下、場合によっては完全に停止)する場合である。このような事態は、ユーザーの「これくらいの条件では使用できるだろう」「これくらいの年数は使用できるだろう」という暗黙の期待を裏切るので、クレームやブランドチェンジにつながる。
これに対する事後の対応は品証やCS部門などになるが、そもそもこのようなことが発生しないように責任をもつのは、製品設計のうち信頼性設計とよばれる部分である。2)で製品設計には機能設計が必要と述べたが、それに加えてこの信頼性設計が必須となる。このような設計が市場段階まで流出したのだから、信頼性設計がまずいだけでなく、それをチェックするためのしくみ(製品設計FMEA(DFMEA)、デザインレビュー、機能性評価、信頼性試験など)も不十分であるということだ。
冒頭の会社様の問題はおもに2)の問題であることがわかった。このように、現在起こっている「品質の問題」というのがどのような現象で、どこの工程(部門)の仕事に問題があるのかの根本原因をつきとめて対策を立案する必要がある。きわめて基本的なことだが、ちょうどそのような場面に遭遇したのでメモ程度に残しておく。
聞き手
つるぞう
その通りです。日本の一人当たりGDPは、3万3800ドルで、これは台湾、中国より高いものの、韓国には追い越されました。OECD加盟国34か国で21位です(2023年度)。聞き手
どのようにしていけばよいのでしょうか。
つるぞう
日本の特に製造業の国際競争力強化に向けては、税負担の問題や各種規制の問題、企業の内部留保の問題も大きいですが、やはり付加価値を生むために日本企業の「製品・サービスの性能・品質」「研究開発・技術」という”強み”をより強くして戦っていく必要があります。
聞き手
その中で最近は、ビッグデータやIoT(モノのインターネット)の利活用に代表されるような「データサイエンス」や「生成AI」が次の柱として取りざたされています。
つるぞう
ひと昔前までは、ビッグデータはGoogleやAmazonのような超巨大企業やプラットフォーマーが中心に扱っていましたが、近年のAIやコンピューティングの更なる進化で、大企業を中心に多くの一般企業でも活用がされるようになってきました。以前はデータを「溜める」ことが目的化してしまい、肝心の「使って」事業貢献までつながっているところが、まだまだ少なかったのです。
聞き手
データサイエンスやAIは、どれほど事業成果につながっているのですか。
つるぞう
企業によってばらつきが大きく、ざっくり言えば二分化しつつあります。その理由は、データサイエンスやAI活用のためには、活用の目的やビジネスモデルの明確化、データサイエンティスト育成または外注、高速・大量データ処理のための情報システムへの多額の投資、等のいくつかのハードルにあります。早くからこのような人財やシステムに投資してきた企業と、そうでない企業の差が表れつつあります。
聞き手
ジェダイトさんの「データエンジニアリング」もそのような技術の一種なのでしょうか。
つるぞう
以前から弊社ではデータサイエンスとは呼ばずに、データエンジニアリングとしていました。事業の損益に重要な1~数年先を見据えた場合、ほとんどの組織や企業が活用しているデータは、いわゆるビッグデータ(*1)でありません。半導体工場などのの量産プロセスから日々出力される大量のデータも、従来の統計解析で処理できるような「ふつうのデータ」なのです。もちろん、エンジニアが研究開発や実験のために採取するデータの量に関しては、言うに及びません。これらの活用に重きを置いてきたのです。
聞き手
「データエンジニアリング」では扱うデータもやり方も違うのですね。
つるぞう
その通りですが、最近では生成AIがより身近になってきたことで、ボーダーレスになってきた感じです。当社は、この日常扱う大量のデータを、事業貢献のために迅速に利活用するための「データエンジニアリング」を推し進めています。これらに用いる手法は、従来から活用されている統計解析や信頼性工学はもちろん、実験データを飛躍的に効率的に採取し、製品やプロセスを迅速で改善・最適化するための品質工学を含みます。特に品質工学は日々進歩しており、また一般には難解と考えられているため、活用すべきである製造業での普及は遅々としています。さらに、生成AIを活用すれば、商品企画やアイデア発想は飛躍的に効率化できます。
聞き手
逆に言えば、データエンジニアリングを駆使できれば他社や諸外国と差別化が図れるとうことですね。
つるぞう
そういうことです。ただし改善や問題つぶしだけでなく、新しい価値の創造が必要です。データエンジニアリングのさまざまな手法を駆使して、活用できるデータを増やしていくことで、製品の価値向上(性能・品質)、生産性向上、ロス低減、などの事業貢献を地に足をつけて加速しることで、これまで無駄にしていたリソースが生まれます。そのリソースをより価値を生み出す仕事に振り向ければよいのです。
聞き手
統計解析や品質工学を活用するコンサルティングは従来もあったかと思いますが。
つるぞう
当社は「超実践品質工学」などの独自の方法論によって、分かりやすく、成果につながる「データエンジニアリング」で製造業をお手伝いします。また最近では、生成AIを活用した品質機能展開QFDや、アイデア発想などにも力を入れています。
聞き手
それによって、業績向上・顧客満足、ひいては世界競争力強化、日本産業の復興につなげていくということなんですね。
つるぞう
それが、当社の使命と考えています。
聞き手
ありがとうございました。
*1)「3V」と言われる、「Velocity:高速に更新され」、「Variety:広範囲・非定形なデータ」であり、結果として「Volume:大量」となるデータのこと。
本ウェブサイトのモデル写真はイメージです。
株式会社ジェダイトでは設計品質やデータ解析にかかわる、コンサルティング顧問契約、設計品質リーダ育成、社内研修、各種セミナー・講演、解析ソフトウェアのご紹介・販売まで、多岐にサポートいたします。
Amazonの経営工学カテゴリで1位となった「これでわかった!超実践品質工学」(増刷継続中)の著者で技術士の、つるぞうこと鶴田明三が直接指導。前職の大手電機メーカから28年間培った経験とオリジナルのノウハウ・メソッドで、数々の品質改善、生産性向上、約1000名の設計品質リーダ育成の実績を挙げてまいりました。
これまでのコンサルやおセミナーでは、数々の肯定的な評価をいただいております。オンラインセミナーも実施中。
弊社では下記のようなご要望にお応えしております。
☑製品設計向上、製造プロセス改善、市場クレーム未然防止などの活動を支援してほしい
☑技術者の品質工学や統計解析のスキルアップを図り、実務に展開したい
☑技術者の社内教育の体系を作成し、運用したい
☑初心者を対象に、まず身近なデータを解析できるようになりたい
☑品質改善活動を牽引できる次世代のリーダを計画的に育成し、大きな事業成果をあげたい
☑マネージャやエキスパートの設計品質、開発テーマ企画等のスキルアップを図りたい
☑社内に設計品質(品質工学等)の啓蒙を図りたい
☑製造工程やマーケットから収集した膨大なデータを解析したい、活用したい
☑生成AIを活用して新製品、新技術、新サービスのアイデアを発想、企画したい …等々
ものづくりDXやAI/IoT時代の製造DX、検査自動化、プロセスやプラントのモニタリング・予防保全等に必修といえる、パターン認識手法「MTシステム(マハラノビス・タグチシステム)」を、御社内で入門から学べます。また、高速・高精度解析ソフトウエアを用いての演習も行えます。オンラインセミナーで実施中。
経営層から「とにかくAIやDXで何かやれ」「せっかく導入した技術情報システムを活用しろ」と言うような、手段先行でのテーマ設定が散見されます。もちろんこれらの手段は活用方法によっては、大きな効率化や品質改善、価値向上をもたらすことができます。しかしそれは、テーマ設定ありきなのです。ツールに振り回されないようにしましょう。
事業改善、実践テーマを設定するときに大事なことは、より上位のレベルがないがしろにされ、手法の枝葉末節議論や、目的と手段のはき違えになっていないかに留意すべきということである。いくら性能や良く、ばらつきの少ない製品を効率よく作ったとしても、それが売れなければ全く意味がないのだから。
普段は設計品リーダー向けのお手伝いを中心にしていますが、京都府や愛知県のメーカー様で若手技術者向けの設計品質講座(6回コース)を実施しました。最後に受講生より各自感想やコメントをいただきました。その中で、